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1. Introduction 

The world population has increased sharply over the history of the planet. 12,000 years 

ago, it was only 4 million, which would now be the size of a city. Currently, it is 1860 

times larger than at that time (see https://ourworldindata.org/world-population-growth). 

Its most significant growth has occurred in modern times: its size was still under 1 billion 

at the beginning of the 19th century (Kremer, 1993); it then increased sevenfold, the 

current population representing 6.5% of the total number of individuals born during the 

entire history of mankind, which was estimated to have been 108 billion (Haub, 1995). 

Growth was particularly rapid between 1950 and 1987, when the world population 

increased from 2.5 to 5 billion, the highest growth rate (2.1%) being recorded in 1962;  

since then, growth has decelerated, though it remains fast (Roser et al., 2013). 

It should be noted that growth is driven by the difference between births and 

deaths. Most recently, the increase in deaths has not been matched by a similar one in 

births, which implies that the world population growth may halt in the near future. The 

'demographic transition' model (Kirk, 1996) explains how growth occurs by identifying 

five different stages, namely: (i) Stage 1: mortality and birth rates are both high; (ii) Stage 

https://ourworldindata.org/world-population-growth
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and sheds light on 



https://ourworldindata.org/world-population-growth#how-has-world-population-growth-changed-over-time
https://ourworldindata.org/world-population-growth#how-has-world-population-growth-changed-over-time
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 Figure 1 displays the evolution over time of the first differenced series. It 
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,dd:H oo =     (4) 

(for the empirical properties of this test, see Gil-Alana and Robinson, 1997; Gil-Alana 

and Moreno, 2012; Abbritti et al., 2016; etc.). 

Three model specifications are considered, namely without deterministic terms, 

with an intercept only, and with an intercept as well as a linear time trend. Table 1 displays 

the estimates of d alongside their 95% confidence intervals, for both the original and the 

log-transformed data, under the assumption of white noise residuals, whilst Table 2 

presents the results when allowing for autocorrelation in the error term ut,; in both cases 

the coefficients in bold are those from the specification selected on the basis of the 

statistical significance of the regressors. Note that for the case of autocorrelated residuals 

we use the exponential spectral model of Bloomfield (1973), which is well suited to the 

framework proposed by Robinson (1994) and applied in this study. This specification 

approximates AR structures in a non-parametric way, and results in rapidly decaying 

autocorrelation coefficients (see, e.g., Gil-Alana, 2004).  

TABLES 1 - 3 ABOUT HERE 

 Concerning the results with white noise residuals (Table 1), it can be seen that the 

time trend is not statistically significant, and the estimated value of d is greater than 1 for 

both the original data (1.46) and 
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TABLES 4 AND 5 ABOUT HERE 

Given the long time span, it is possible that breaks have occurred. Therefore we 

carry out the Bai and Perronôs (2003) break tests. These results are reported in Table 4. 

Three breaks are detected in the case of the original data (1915, 1948 and 1981) and five 

in the case of the logged ones (1832, 1880, 1915, 1948 and 1981). The same number of 

breaks (and break dates) is found in both cases for the growth rates, which are calculated 

as the first differences of the logged series. However, splitting the sample accordingly 

would yield very short subsamples with unreliable estimates. Therefore, we carry out the 

tests again allowing for a single break only. This appears to have occurred in 1948 in the 

case of the original data, and in 1946 for the logged series and the growth rate (Table 5).  

 TABLES 6 -  8 ABOUT HERE 

Tables 6, 7 and 8 report the estimated values of d corresponding to the two 

subsamples based on the detected breaks for each of the three series (original data, log-

transformed ones, growth rates), again for the three specifications without deterministic 

terms, with an intercept only, and an intercept as well as a linear time trend. It is 

noteworthy that in the case of the original series (Table 6) there is a substantial reduction 

in the degree of integration after the break, the estimated value of d decreasing from above 

2 (or even 3) before the break to 1 or around 1 after it. Similar evidence is obtained when 

using the logged values (Table 7), namely the degree of integration falls sharply after the 

break; in addition, there is now a significant positive trend in the second subsample. 

Finally, in the case of the growth rates (Table 8) there is a decrease in the degree of 

integration from the first to the second subsample (from 2.66 to 0.52 with white noise 

errors and from 1.05 to 0.58 with autocorrelated ones), but the time trend is now negative 

and significant in the second subsample regardless of the specification for the error term. 
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4.  Conclusions 

This paper uses fractional integration methods to measure the degree of persistence in 

historical annual data on the world population over the period 1800-2016. The analysis is 

carried out for the original series, and also for its log transformation and its growth rate. 

The results indicate that the series considered are highly persistent; in particular, the 

estimated values of the fractional diffencing parameter are above 1, which implies that 

shocks have permanent effects.  

It should be noted that these findings could be biased in the presence of structural 

breaks which have been overlooked. Therefore we also carry out endogenous break tests 

which suggest that the main break in the data occurred shortly after the Second World 

War. The evidence based on the corresponding sub-sample estimation indicates a sharp 

fall in the degree of dependence between the observations in the second sub-sample. 

However, in the case of the original data and their log transformation they are still above 

1, which implies explosive behaviour and permanent effects of exogenous shocks; in 

addition, there is a statistically significant positive time trend. By contrast, the growth rate 

of the world population, though not covariance stationary, is mean-reverting, and thus 

shocks to this series will only have transitory effects; moreover, there is a negative time 

trend. This represents important information for policy makers concerned with 

demographic trends, since it suggests that there are already some factors at work (such as 

a fall in fertility) slowing down growth in the world population; this should be taken into 

account when designing policies aimed at containing population growth owing to the 

limited resources of the planet. 
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Figure 1: Time series plot 
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Table 1: Estimates of the differencing parameter, d - White noise errors 

Series No terms With a constant 
With a constant and a 

linear time trend 

Original 1.44   (1.34,  1.57) 1.46   (1.36,  1.59) 1.46   (1.36,  1.59) 

Log-transformed 0.98   (0.90,  1.10) 1.78   (1.66,  1.92) 1.78   (1.66,  1.92) 

The values in bold are those from the model selected on the basis of the statistical significance of the 

regressors. The values in parenthesis are the confidence bands at the 95% level. 

 

Table 2: Estimates of the differencing parameter, d - Autocorrelated errors 

Series No terms With a constant 
With a constant and a 

linear time trend 

Original 1.38   (1.18,  1.72) 1.41   (1.19,  1.75) 1.41   (1.20,  1.75) 

Log-transformed 0.95   (0.81,  1.15) 1.71   (1.30,  2.20) 1.71   (1.30,  2.20) 

The values in bold are those from the model selected on the basis of the statistical significance of the 

regressors. The values in parenthesis are the confidence bands at the 95% level. 

 

 

Table 3: Estimates of the differencing parameter, d, for the growth rate series  

Series No terms With a constant 
With a constant and a 

linear time trend 
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Table 7a: Sub-sample estimates of the differencing parameter, d - Logged data  

i) White noise errors 

Series No terms With a constant 
With a constant and a 

linear time trend 

1800 - 1948 0.99   (0.89,  1.14) 3.52   (3.07,  4.09) 3.66   (3.15,  4.15) 

1949 - 2016  0.98   (0.83,  1.19) 1.46   (1.24,  1.76) 1.39 (1.20,  1.65) 

ii) Autocorrelated errors 
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Table 8a: Estimates of the differencing parameter, d - Growth rates  


