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∏ (1 − 2 cos 𝑤𝑗
𝑟 𝐿 + 𝐿2)

𝑑𝑗𝑚
𝑗=1 𝑥(𝑡)  =   𝑢(𝑡),      𝑡  =    1, 2, …,   (4)

  

where 𝑤𝑗
𝑟 = 2πr/T, r = T/j is a real scalar value, L is the lag operator, i.e., Lx(t) = x(t-1), 

dj is another real value corresponding to the order of integration of the cycle that explodes 

(i.e., it goes to infinity) in the spectrum at λ = j
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the estimation of as many parameters as in the case of ARMA models. In addition, 

Bloomfield’s (1973) model is stationary across all its values (see Gil-Alana, 2004). 

 In the empirical application carried out below we assume that p = 4, and that w(r;1) 

= 0, so the first cyclical component corresponds to the long run or zero frequency. In such 

a case, the summand (1 − 2  cos 𝑤(𝑟; 𝑗) 𝐿 + 𝐿2)𝑑𝑗 becomes (1 − 2 𝐿 + 𝐿2)𝑑1, which can 

be expressed as(1 − 𝐿 )2𝑑1, with the pole or singularity in the spectrum going to infinity 

at the zero frequency (Granger, 1980, Granger and Joyeux, 1980 and Hosking, 1981). For 

the other two cyclical structures, we choose the frequencies on the basis of the values of 
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this test against various alternatives. A similar experiment was conducted in Gil-Alana 

(2001), though in that case m = 1 and thus only a single cyclical structure was allowed. 

By contrast, in the present study we assume that m = 3 and that the Data Generating 

Process (DGP) is characterised by the following orders of integration: d1= 0.75, d2 = 0.50 

and d3 = 0.25; this implies that the first cyclical structure is highly persistent and non-

stationary, the second one is on the borderline between the stationary and nonstationary 

case, and the third one is stationary. For the length of the cycles we impose j = 10, 100 

and 250, with different sample sizes. These values are arbitrary, though the results were 

found to be robust to choosing other values. For the alternative hypotheses we consider 

values for the three orders of integration of 0.25, 0.50 and 0.75. For j we choose the same 

values as in the true model, therefore the size of the test is reported in the tables for d = 

(0.75, 0.50, 0.25)T. 

INSERT TABLES 1, 2 AND 3 ABOUT HERE 

Table 1
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log transformation in the upper panel, and their corresponding periodograms in the lower 

one. Both exhibit a 
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              𝑦(𝑡)  =  𝛼 +  𝛽 𝑡  +  𝑥(𝑡),   (11) 

and make two 
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Figure 2: Data in first differences and periodograms 

Original data Logged transformed data 

  
 

 

 

Periodogram original data (j = 1, …, 1000) Periodogram logged data (j = 1, …, 1000) 

  

Periodogram original data, (j = 1, …120) Periodogram logged data (j = 1, …, 120) 

  
The values on the horizontal axis correspond to the discrete Fourier frequencies, λj = 2πj/T, j = 1, 2, … T/2. 
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Table 6: Frequencies with the highest values at periodograms, with j = 1, é, 1000 

(1 – L) Data (1 – L) Log data 

j T / j Value at Periodogram J T / j Value at Periodogram 


